Analysis of Nonlinear Dynamics by Square Matrix Method

Li Hua Yu Brookhaven National Laboratory

NOCE, Arcidosso, Sep. 2017

Write one turn map of Taylor expansion as square matrix

L.H. Yu, PRAB, 20, 034001 (2017)

Simplest example of nonlinear map :

$$x = x_0 \cos \mu + p_0 \sin \mu + \epsilon x_0^2 \sin \mu$$
$$p = -x_0 \sin \mu + p_0 \cos \mu + \epsilon x_0^2 \cos \mu'$$

Use z = x - ip and $z^* = x + ip$

$$\begin{split} z &= e^{i\mu} z_0 - \frac{i}{4} \epsilon e^{i\mu} z_0^2 - \frac{i}{2} \epsilon e^{i\mu} z_0 z_0^* - \frac{i}{4} \epsilon e^{i\mu} z_0^{*2} \\ z^* &= e^{-i\mu} z_0^* + \frac{i}{4} \epsilon e^{-i\mu} z_0^2 + \frac{i}{2} \epsilon e^{-i\mu} z_0 z_0^* + \frac{i}{4} \epsilon e^{-i\mu} z_0^{*2} \\ z^2 &= e^{2i\mu} z_0^2 - \frac{i}{2} \epsilon e^{2i\mu} z_0^3 - i \epsilon e^{2i\mu} z_0^2 z_0^* - \frac{i}{2} \epsilon e^{2i\mu} z_0 z_0^{*2} \\ zz^* &= z_0 z_0^* + \frac{i}{4} \epsilon z_0^3 + \frac{i}{4} \epsilon z_0^2 z_0^* - \frac{i}{4} \epsilon z_0 z_0^{*2} - \frac{i}{4} \epsilon z_0^{*3} , \\ z^{*2} &= e^{-2i\mu} z_0^{*2} + \frac{i\epsilon}{2} e^{-2i\mu} z_0^2 z_0^* + i \epsilon e^{-2i\mu} z_0 z_0^{*2} + \frac{i\epsilon}{2} e^{-2i\mu} z_0^{*3} \\ z^3 &= e^{3i\mu} z_0^3 \\ \dots \\ z^{*3} &= e^{-3i\mu} z_0^{*3} \\ \tilde{Z} &= (1, z, z^*, z^2, zz^*, z^{*2}, z^3, z^2 z^*, zz^{*2}, z^{*3}). \longrightarrow \qquad Z = MZ_0, \end{split}$$

At 3rd order M is 10x10 matrix:

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & M_{11} & M_{12} & M_{13} \\ 0 & 0 & M_{22} & M_{23} \\ 0 & 0 & 0 & M_{33} \end{bmatrix} \qquad M_{11} = \begin{bmatrix} e^{i\mu} & 0 \\ 0 & e^{-i\mu} \end{bmatrix}, M_{22} = \begin{bmatrix} e^{2i\mu} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-2i\mu} \end{bmatrix}, \dots M_{23} = \begin{bmatrix} -\frac{i}{2}\epsilon e^{2i\mu} & -i\epsilon e^{2i\mu} & -\frac{i}{2}\epsilon e^{2i\mu} & 0 \\ \frac{i}{4}\epsilon & \frac{i}{4}\epsilon & -\frac{i}{4}\epsilon & -\frac{i}{4}\epsilon \\ 0 & \frac{i}{2}\epsilon e^{-2i\mu} & i\epsilon e^{-2i\mu} & \frac{i}{2}\epsilon e^{-2i\mu} \end{bmatrix}$$

M is upper-triangular matrix with diagonal elements precisely known (the eigenvalues)

$$1, \underbrace{e^{i\mu}, e^{-i\mu}}, \{e^{2i\mu}, 1, e^{-2i\mu}\}, \{e^{3i\mu}, \underbrace{e^{i\mu}, e^{-i\mu}, e^{-3i\mu}}_{\rightarrow} \} \longrightarrow -->2 \text{ eigenvectors}$$

- Invariant subspace of eigenvalue $e^{i\mu}$ of dimension 2.
- In 3rd order, nonlinear dynamics is represented by a rotation in this 2 dimensional space 10x10→2x2
- For higher order, the dimension of the invariant subspace is always much smaller than original dimension.
- Example, 7'th order , for 4 variables x, p_x, y, p_y 330x330 \rightarrow 4x4

We find left eigenvectors U, such that with Jordan matrix | au|

$$UM = e^{i\mu I + \tau} U$$
$$U = \begin{bmatrix} u_1 \\ u_2 \\ \dots \\ \dots \\ u_{m-1} \end{bmatrix} \qquad \tau = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

There is **only one step to high order**, without iteration from low order to high order

• Example, 3'th order , for 2 variables
U: 2x10 matrix M: 10x 10
$$au$$
: 2x2 matrix

$$UZ = UMZ_0 = e^{i\mu I + \tau} UZ_0.$$
 Let $W \equiv UZ = \begin{bmatrix} w_0 \\ w_1 \\ \dots \\ w_{m-1} \end{bmatrix}$

F and 7

 $W \equiv UZ$ $W_0 \equiv UZ_0 \qquad \longrightarrow \qquad W = e^{i\mu I + \tau} W_0.$ KAM theory states that the invariant tori are stable under small perturbation There is a stable frequency, hence

$$W = e^{i\mu I + \tau} W_0 \cong e^{i(\mu + \phi)} W_0.$$
 (*I* here is the identity matrix
Compare left with right side
 $\tau W_0 \cong i\phi W_0.$

So we must have an approximate "Coherent state":

$$\tau \begin{bmatrix} w_0 \\ w_1 \\ \dots \\ w_{m-1} \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \\ \dots \\ 0 \end{bmatrix} \cong \begin{bmatrix} i\phi w_0 \\ i\phi w_1 \\ \dots \\ i\phi w_{m-1} \end{bmatrix} \longrightarrow i\phi = \frac{w_1}{w_0} \cong \frac{w_2}{w_1} \cong \frac{w_3}{w_2} \dots \frac{w_{m-1}}{w_{m-2}}$$

(Last row is very small, so it is still approximately correct)

Amplitude dependent tune ϕ Action $|w_0|$ is nearly a constant

The Pendulum Equation as an 3rd order example

$$\begin{split} H &= \frac{p^2}{2} + 1 - \cos(x) \qquad H = \frac{p^2}{2} + \frac{x^2}{2} - \frac{x^4}{24} \qquad \text{Expand Hamiltonian to 4'th order} \\ &z \equiv x - ip, \qquad z^* \equiv z + ip \\ \dot{z} &= iz - \frac{iz^3}{48} - \frac{1}{16}iz^2z^* - \frac{1}{16}izz^{*2} - \frac{iz^{*3}}{48} \\ &\dot{z}^* &= -iz^* + \frac{iz^{*3}}{48} + \frac{1}{16}iz^*z^{*2} + \frac{1}{16}iz^2z^* + \frac{iz^3}{48} \\ &\frac{dz^2}{dt} \approx 2iz^2, \quad \frac{dzz^*}{dt} \approx 0, \quad \frac{dz^{*2}}{dt} \approx 2iz^{*2}, \quad \cdots \quad , \frac{dz^{*3}}{dt} \approx -3iz^{*3} \end{split}$$

$$U = \left(\begin{array}{c} u_0\\ u_1 \end{array}\right) = \left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 0 & \frac{1}{96} & 0 & -\frac{1}{32} & -\frac{1}{192}\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{i}{16} & 0 & 0 \end{array}\right)$$

Left eigenvectors

$$\dot{Z} = MZ, \quad UM = (i\omega_0 I + \tau)U, \quad \tau \equiv \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

$$W = UZ = \begin{bmatrix} u_0 Z \\ u_1 Z \end{bmatrix} \equiv \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}.$$

$$\dot{W} = U\dot{Z} = UMZ = (i\omega_0 I + \tau)UZ = (i\omega_0 I + \tau)W$$

$$\dot{w}_0 = i\omega_0 w_0 + w_1 = (i\omega_0 + \frac{w_1}{w_0})w_0 \equiv i(\omega_0 + \phi)w_0$$

 $\dot{w_1} = i\omega_0 w_1$

$$w_0 = u_0 Z = z + \frac{z^3}{96} - \frac{zz^{*2}}{32} - \frac{z^{*3}}{192} \approx z$$
$$w_1 = u_1 Z = -\frac{1}{16} i z^2 z^*$$

Lowest order approximation

$$\Delta \omega = \phi = -i \frac{w_1}{w_0} \cong -\frac{1}{16} z z^* \qquad \qquad {\rm Frequency \ shift}$$

 $E_0 = \frac{z^2}{2}, \quad \omega_0 = 1$, and initially, $z^* = z = x_0$, so

$$\frac{\omega}{\omega_0} = \frac{\omega_0 + \Delta \omega}{\omega_0} \cong 1 - \frac{1}{8}E_0$$
 A well known result

This is at 3'rd order. At 10'th order,

Compare canonical perturbation theory with Square Matrix

Multi-turns

 $W(n) = e^{in\mu} e^{n\tau} W_0$

Further derivation leads to

$$w_0(n) = e^{in\mu + in\phi + \frac{n^2}{2}\Delta + \dots} w_0(n=0)$$

$$\Delta \equiv \frac{w_2}{w_0} - (\frac{w_1}{w_0})^2 \approx 0$$

Gives **frequency fluctuation**, seems to be related to Liapunov exponent.

"Coherence condition":

 $\text{Im}\phi \approx 0; \Delta \approx 0.$

Numerical Test, Poincare Sections: Strongly coupled x,y motion reduced to two simple independent rotations in separate planes

Tune vz. Amplitude agrees with tracking

"Coherence condition"

$$\Delta \equiv \frac{w_2}{w_0} - (\frac{w_1}{w_0})^2 \approx 0$$

Gives frequency fluctuation, seems to be related to Liapunov exponent.

This can be used to optimize "dynamic aperture" of storage rings

Compare RMS of $\Delta w_x/w_x$ from tracking (red) with theory (green) times 4.1 around a resonance

Scan x near resonance at x=-1mm y=6mm map by Yongjun Li

Compare Poincare Sections of $r_y \equiv |w_y|$ for lattices optimized by nonlinear driving terms and by square matrix

Phase space manipulation

5 particles with initial y increases proportional to initial x Before and after minimization of $|\Delta w/w|$ by Yongjun Li

Tune footprint comparison of two approaches

Optimized by nonlinear driving terms

Optimization obtained by square matrix

Summary of off Resonance solution

- Square matrix $Z = MZ_0$
- One step to high order without iteration $UM = e^{i\mu I + \tau}U$

• Action-angle approximation $W \equiv UZ = \begin{bmatrix} w_0 \\ w_1 \\ \\ \\ W = e^{i\mu I + \tau} W_0 \cong e^{i(\mu + \phi)} W_0. \end{bmatrix}$

- Amplitude dependent tune ϕ Action $|w_0|$ is nearly a constant: $|\frac{\Delta W}{W}| \approx 0$
- frequency fluctuation $\Delta \equiv \frac{w_2}{w_0} (\frac{w_1}{w_0})^2 \approx 0$ amplitude fluctuation $|\frac{\Delta W}{W}|$
- "Coherence condition": $\mathrm{Im}\phi \approx 0; \Delta \approx 0.$ $|\frac{\Delta W}{W}| \approx 0$

chromatic detuning (as above)

ANA: objective of nonlinear chromaticity and driving/detuning terms

CSI: objective of CS invariant distortion and chromatic detuning, developed

from the concept based on square matrix

DA: objective of on- and off-momentum dynamic acceptance, and chromatic detuning

DET: detuning of x-y grid (on and off momentum)

Yipeng Sun, Michael Borland Argonne National Laboratory High Brightness Synchrotron Light Source Workshop April 26-28, 2017

A Celestial Dynamics Problem **Exactly on Resonance**: Henon-Heiles Problem

First rows of the matrixes give:

Coherence condition

Solution on Henon-Heiles Problem: Exactly on Resonance

Two Poincare Sections of the new actions show two independent rotations

A way to avoid small denominator problem?

- Clearly, this method is general, and valid for more than two frequencies in resonance.
- Hence this method provides a way to surround the small denominator problem